Algebra考點分析(三)方程
Algebra代數(shù)部分在GMAT數(shù)學(xué)中僅次于算術(shù)部分,是第二大考點和難點。代數(shù)部分主要包括代數(shù)式、方程、不等式、冪、絕對值和函數(shù)幾個考點。今天我們來看一下方程部分的一些難點。
一、方程考點
關(guān)于方程,GMAT主要考察兩個方面:
1. 解方程,包括一元一次方程、一元二次方程、二元及多元一次方程組的求解,這部分通常會結(jié)合文字應(yīng)用題一起考察,通過題干里給出的條件,假設(shè)未知數(shù),根據(jù)應(yīng)用題的幾類模型列出方程組求解就可以了。這種考察的方式重點在于理解題意,只要能列出方程就可以解出答案。
2. 方程是否有解,由于DS類題目的特殊性,即并不關(guān)注最終的答案,而只關(guān)注是否有答案,所以方程如果放到DS的題目考察的話很可能只需要我們?nèi)ヅ袛嗍欠裼薪饩涂梢粤?,而不一定要真的解方程出來。而判斷方程是否有解遵循以下原則:
若 有效方程個數(shù)≥未知數(shù)個數(shù),則方程有解。
二、例題
【例一】
A $10 bill(1,000 cents) was replaced with 50 coins having the same total value. The only coins used were 5-cent coins, 10-cent coins, 25-cent coins. and 50-cent coins. How man 5-cent coins were used?
(1) Exactly 10 of the coins were 25-cent coins and exactly 10 of the coins were 50-cent coins.
(2)The number of 10-cent coins was twice the number of 5-cent coins.
通過題干可以假設(shè)各個面額的各有x,y,m,n個,題干會給出來兩個方程:
個數(shù)總和:x+y+m+n=50
價值總和:5x+10y+25m+50n=1000
條件1:給出兩個方程:m=10,n=10,加上題干的兩個方程,四個方程求解四個未知數(shù),可解,充分;
條件2:給出一個方程:y=2x,加上題干兩個方程,三個方程求解四個未知數(shù),不可解,不充分。
所以這個題選A。
【例二】
Merle's spare change jar has exactly 16 U.S. coins,each of which is a 1-cent coin,a 5-cent coin,a 10-cent coin,a 25-cent coin or a 50-cent coin. If the total value of the coins in the jar is 288 U.S. cents, how many 1-cent coins are in the jar?
(1)The exact numbers of 10-cent, 25-cent, and 50-cent coins among the 16 coins in the jar are, respectively, 6, 5, and 2.
(2)Among the 16 coins in the jar there are twice as many 10-cent coins as 1-cent coins.
本題看似和例一相同,但其實有一個隱藏的條件不同。首先題干同樣分別假設(shè)五個面額的各有x,y,z,m,n個,題干兩個方程:
個數(shù)總和:x+y+z+m+n=16
價值總和:x+5y+10z+25m+50n=288
條件1:給出三個方程:z=6,m=5,n=2,加上題干的兩個方程,五個方程求解五個未知數(shù),可解,充分;
條件2:給出一個方程:y=2x,加上題干兩個方程,三個方程求解五個未知數(shù),不可解。但這個題的價值總和尾數(shù)為8,如果沒有1-cent的那么尾數(shù)一定是0或5,但尾數(shù)8說明1-cent數(shù)量的尾數(shù)是3或8。若8則10-cent有16個,總數(shù)超過16,不成立,所以1-cent一定是3個,因此可得x=3,充分。
例二通過價值總和的特殊尾數(shù)這個隱含的條件可解得x,所以在進入到難題庫時看到各個條件一定要注意隱含的內(nèi)容,不要錯過任何信息。
以上就是方程部分考察的難點。

400-1816-180








12G備考資料